ECEN 5713 Linear Systems Spring 2008 Midterm Exam \#2

Choose any four out of five problems.
Please specify which four listed below to be graded:

1) ___ ; 2) ___ ; 3)__ ; 4) ___;

Name : \qquad

E-Mail Address:

Problem 1:

Let

$$
V^{\perp}=\operatorname{Span}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right],\left[\begin{array}{cc}
-5 & 1 \\
1 & 5
\end{array}\right],\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right]\right),
$$

determine the original space, V. For $x=\left[\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right]$, find its direct sum representation of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in V$, and $x_{2} \in V^{\perp}$ (i.e., the direct sum of spaces V and V^{\perp} is the set of all 2×2 matrics with real coefficients).

Problem 2:

Let $V=F^{3}$, and let F be the field of rational polynomials. Determine the representation of $v=\left[\begin{array}{lll}s+2 & \frac{1}{s} & -2\end{array}\right]^{T}$ in (V, F) with respect to the basis $\left\{v^{1}, v^{2}, v^{3}\right\}$, where $v^{1}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}, v^{2}=\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{T}, v^{3}=\left[\begin{array}{lll}0 & -1 & 0\end{array}\right]^{T}$.

Problem 3:

$$
A=\left[\begin{array}{lllll}
3 & 2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0 & 0
\end{array}\right]
$$

What are the rank and nullity of the above linear operator, A ? And find the bases of the range spaces and the null spaces of the operator, A ?

Problem 4:

Consider the subspace of \mathfrak{R}^{4} consisting of all 4×1 column vector $x=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$ with constraints $x_{1}+x_{2}+x_{3}=0$ and $2 x_{1}+2 x_{2}+2 x_{3}=0$. Extend the following set (with only one element) to form a basis for THE subspace:
$\left[\begin{array}{c}1 \\ 1 \\ -2 \\ 0\end{array}\right]$.

Problem 5:

Show if the following sets

$$
\left[\begin{array}{c}
3 \\
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
2 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
2 \\
-2 \\
2
\end{array}\right]
$$

span the same subspace V of $\left(\mathfrak{R}^{4}, \mathfrak{R}\right)$.

