OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Spring 2008 Midterm Exam #2

Choose Please specify	•	five probl	
		; 4)	•
Name : _			
Aail Address:			

Problem 1:

Let

$$V^{\perp} = Span \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -5 & 1 \\ 1 & 5 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix} \end{pmatrix},$$

determine the original space, V. For $x = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$, find its direct sum representation of

 $x = x_1 \oplus x_2$, such that $x_1 \in V$, and $x_2 \in V^{\perp}$ (i.e., the direct sum of spaces V and V^{\perp} is the set of all 2×2 matrics with real coefficients).

Problem 2: Let $V = F^3$, and let F be the field of rational polynomials. Determine the representation of $v = \begin{bmatrix} s+2 & \frac{1}{s} & -2 \end{bmatrix}^T$ in (V, F) with respect to the basis $\{v^1, v^2, v^3\}$, where $v^{1} = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^{T}, v^{2} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^{T}, v^{3} = \begin{bmatrix} 0 & -1 & 0 \end{bmatrix}^{T}.$

Problem 3:
$$A = \begin{bmatrix} 3 & 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 & 0 \end{bmatrix}$$

What are the rank and nullity of the above linear operator, A? And find the bases of the range spaces and the null spaces of the operator, A?

Problem 4:

Consider the subspace of \Re^4 consisting of all 4×1 column vector $x = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$ with constraints $x_1 + x_2 + x_3 = 0$ and $2x_1 + 2x_2 + 2x_3 = 0$. Extend the following set (with only one element) to form a basis for THE subspace:

$$\begin{bmatrix} 1 \\ 1 \\ -2 \\ 0 \end{bmatrix}$$

Problem 5: Show if the following sets

The following sets
$$\begin{bmatrix} 3 \\ 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ -2 \\ 2 \end{bmatrix}$$

span the same subspace V of $(\mathfrak{R}^4,\mathfrak{R})$.